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This paper describes a laboratory experiment designed to compare measurements 
with published theoretical ideas of the mixed-layer growth of a two-layer system in 
which the turbuience is induced by an oscillating grid. Experimental results show 
excellent agreement with an earlier theory by one of us (Long), in which the 
mixed-layer depth D, measured from a virtual origin is given by D ,  - V$KfitA, 
where K is action, t is time and V, is a characteristic velocity of the problem. The 
experiments also verify Long’s theoretical entrainment relation E = a2 R i f ,  where 
E is the entrainment coefficient and Ri = D3,Ab/K2, and A6 is the buoyancy difference 
between the two layers. The interfacial-layer thickness was observed to  be propor- 
tional to the depth of the mixed layer, as also predicted by Long. After a certain depth, 
the entrainment law tends to deviate from Long’s theory. The deviation may be due 
to wall effects. 

1. Introduction 
Turbulent mixing in a stably stratified fluid has attracted great interest from fluid- 

dynamicists because of its importance in various phenomena in geophysics and 
engineering. The roots of its study can be found as far back as the classical work of 
Ekman (1905), but the first experiments on mixing were run by Rouse & Dodu (1955). 
They used two initially homogeneous layers with an oscillating grid agitating the 
upper layer. They kept the interfacial layer a t  the same position by allowing water 
to flow into the lower layer and out of the upper mixed layer. A similar experiment 
of a qualitative nature for the linearly stratified case was conducted by Cromwell 
(1960). 

I n  the geophysical context, the experiments performed to  date fall into four broad 
categories : ( a )  oscillating-grid experiments (Bouvard & Dumas 1967 ; Turner 1968 ; 
Wolanski 1972; Crapper & Linden 1974; Thompson & Turner 1975; Linden 1975; 
Wolanski & Brush 1975; Hopfinger & Toly 1976; McDougall 1979; Folse, Cox & 
Schexnayder 1981 ; Ivey & Corcos 1982); (6) shear-driven experiments to simulate 
mixing due to drift currents (Ellison & Turner 1959; Loftquist 1960; Kato & Phillips 
1969; Wu 1973; Kantha, Phillips & Azad 1977; Deardorff & Willis 1982; Scranton 
& Lindberg 1982); (c) convective stirring experiments to simulate the mixing due to 
seasonal and diurnal heating and cooling (Deardorff, Willis & Lilly 1969 ; Deadorff, 
Willis & Stockton 1980; Long & Kantha 1979); ( d )  experiments designed in an 
attempt to understand turbulent mixing in a stably stratified fluid under an imposed 
stabilizing buoyancy flux (Turner & Kraus 1967 ; Moore & Long 1971 ; Kantha & Long 
1980; Hopfinger & Linden 1982). Additional references for the four categories can 
be found in Turner (1973), Phillips (1976) and Kitaigorodskii (1979). 
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Aside from its geophysical implications, turbulent mixing is also important in 
studies of water-quality control in the hypolimnion in stratified reservoirs (Fisher et 
al. 1979), pollution in the atmosphere and various bodies of water (Baines 1975), 
studies of the spreading angle in supersonic jets (Brown & Roshko 1974), problems 
of the control of the water temperature in multi-outlet water reservoirs (e.g. Oroville 
reservoir, Fisher et al. 1979) the design of solar ponds to obtain maximum temperatures 
(Leshuk et al. 1978), etc. 

Although the large number of contributions has improved our understanding of 
mixed-layer dynamics in many respects, more theoretical work is necessary. As we 
would expect, closure of the dynamical equations becomes even more difficult in the 
presence of stratification. In  this connection, Rouse & Dodu (1955) argued that the 
rate of change of potential energy is proportional to the input of kinetic energy, so 
that the entrainment coefficient ( E  = ue/u*, where u, is the entrainment rate defined 
as dD/dt, D is the depth of the mixed layer and u* is a scaling velocity) is inversely 
proportional to the Richardson number Ri, = DAb/u2,, where Ab is the buoyancy 
jump across the interface. This seems not to predict the result,s of the grid 
experiments, but some support for this law can be seen in the shear experiments of 
Kato & Phillips (1969) and Moore & Long (1971). 

Following a valuable idea by Turner (1973) that quantities near the interface are 
the ones that are dynamically important for entrainment, Linden (1975) suggested 
that the rate of change of potential energy of the stratified system is proportional 
to the kinetic energy available at the interface. Although the resulting prediction of 
the time dependence of the mixed-layer depth shows a possible agreement with 
observations. close inspection reveals disagreements (Folse et al. 1981). 

A model of the grid as a source of turbulence has been constructed by Long (1978a), 
who derived a single parameter of the dimensions of eddy viscosity called grid ‘ action ’ 
K ,  characteristic of the grid and its motion. Long (1978~)  showed that at high 
Reynolds numbers the r.m.s. velocity (T, and the integral lengthscale 1, measured 
at a distance z from a virtual origin, become 

K 
(T, - -, 

2 

I - z. (2) 

Based partly on measurements and on dimensional arguments, Thompson & Turner 
(1975) and Hopfinger & Toly (1976) proposed 

(3) 

= C,S$Miwz-’ (4) 

u, = c, S@ wz-f, 

respectively, where S is the stroke, M is the mesh size, w is the frequency of the grid 
oscillation, and C,, C, are constants. 

‘Action ’ can be evaluated in two ways : (i) by observing the deepening of the mixed 
layer in a homogeneous fluid and using D* = (Kt)i, where D* is the thickness of the 
mixed layer measured from a virtual origin (Dickinson & Long 1978, 1983), and (ii) 
using Kl = (T, 1 (Long 1978b). These differ by a numerical factor ( K  = 7 4 ) .  Additional 
experimental support for the concept of ‘action ’ is found in Dickinson & Long (1983), 
Thompson (1969), McDougall (1979), Hopfinger & Toly (1976), Folse et al. (1981). In  
particular, McDougall (1979) has found it unfortunate that the 2-2 relation has been 
widely used, but for our present purposes we will continue to entertain this relation 
as a possibility. 
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FIGURE 1. Schematic view of experimental apparatus. 

We believe that the results of oscillating-grid experiments may be applicable to 
mixing due to wave-breaking in the oceans, tidal mixing in a stratified channel, 
mixing in a fjord due to periodically changing winds, etc. Also, grid mixing is 
apparently one of the simpler examples of turbulence, and is one for which there are 
detailed theories (Long 1978a, b ) .  Therefore we have undertaken in this paper to 
investigate in detail the influence of various parameters on the deepening of the mixed 
layer in a two-fluid system in order to check the hypotheses presented so far in the 
literature relevant to this process. 

2. Analytical considerations 

interfacial layer), the potential energy per unit area can be written (Linden 1975) 
For the given configuration in figure 1 (but neglecting the thickness of the 

( 5 )  
where Do is the initial depth of the upper layer, Abo is the buoyancy jump across the 
interface at an arbitrary time to, and p1 is the reference density (density in the lower, 
undisturbed layer). From continuity, DAb = Do Ab, = Vi is constant. If the depth of 
the mixed layer measured from a virtual origin located at a distance do from the top 
of the layer (figure 1)  is D*, the rate of change of potential energy becomes 

A = i p l  DD, Ab, + const = +pl c D + const, 

where the dot represents differentiation with respect to time. Let us now obtain the 
dependence on time of the mixed-layer depth in two ways using the hypotheses of 
Rouse & Dodu (1955) and Linden (1975). 

(a)  If the rate of change of potential energy of the system, proportional to dD,/dt, 
is a constant fraction of the energy flux by the grid (Rouse & Dodu 1955) (i.e. 
proportional to w3S3),  the entrainment law becomes 

D = C, Vi2S3w3t, (7)  

where C, is a universal constant. 
13 FLM 133 
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( b )  If the rate of change of potential energy is proportional to  the kinetic energy 
available a t  the interface (i.e. at), i t  is possible to apply the argument of Linden (1975) 
for his linearly stratified model to  the two-layer case in a simple manner. Using (6), 
together with (3) and (4), we obtain respectively 

where C, and C5 are universal constants. 
On the other hand, Long (1978b) has offered several arguments pertaining to the 

problem of entrainment in order to  close the set of equations consisting of the energy 
equation and the integrated buoyancy equation across the mixed layer and the 
interfacial layer. They include the following : 

(i) The interfacial layer is continuously agitated by the eddies in the mixed layer. 
The large eddies move over the interface and become distorted (flattened) as in motion 
over a rigid surface. During this motion, there is an exchange of energy from the 
vertical to the horizontal component of velocity in accordance with the theory of 
Hunt & Graham (1978). This was verified later by McDougall (1979) and Piat & 
Hopfinger (1981). Further, these large-scale, flattened eddies do not possess enough 
kinetic energy (vertical component) to  cause entrainment, so that the quasi-isotropic 
eddies contained in the energy spectra a t  the same levels, which do not feel the 
presence of the interface, are responsible for the entrainment. These quasi-isotropic 
eddies have an energy distribution which follows Kolmogorov’s Ic-g relation. 

(ii) In  the interfacial layer, the kinetic energy of turbulence and available potential 
energy of the eddies are of the same order, and this contributes to the determination 
of the thickness of the turbulent patches formed due to  breaking of interfacial waves 
a t  the top of the interfacial layer. Turbulence in the interfacial layer is intermittent, 
and the intensity of turbulence decreases as distance from the mixed layer increases. 
I n  this layer the dissipation, energy-flux divergence and buoyancy flux are all of the 
same order. 

(iii) Entrainment occurs (i.e. buoyancy flux exists) owing to  the breaking of 
internal waves in the interfacial layer. This wave-breaking occurs through a 
resonance mechanism in which the forcing is accomplished by the eddies of the mixed 
layer acting on the upper surface of the interfacial layer. 

(iv) Dissipation varies vertically within the interfacial layer. Near the mixed- 
layerlinterfacial-layer boundary, dissipation is attributable to a cascade process in 
which energy flows from large eddies of the size of the mixed-layer depth D* to the 
small, quasi-isotropic eddies. As the distance downward from the mixed- 
layerlinterfacial-layer boundary increases, the dissipating eddies of the small 
Kolmogorov scales receive energy from the large eddies of the size of the turbulent 
patches through a cascade mechanism. Also in this case, the dissipation is a function 
of the depth of the mixed layer D* and the distance from the interfacial-layerlmixed- 
layer boundary. 

Using these arguments, Long (1978b) finds for the two-layer case 

(10) 

h = a, D*, (11) 

1 a x  D ,  = B, V;llKiltll, 

where u, is the entrainment velocity, Ri = D$ A b / P  is the Richardson number, h 
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is the interfacial-layer thickness, and cq, a2 and B, are universal constants. Note that 
the agreement of the exponent of t in (8) and (10) is fortuitous, and a comparison 
with experiment requires an investigation also of the dependency of D* on V, and 
K in (10) and, because S is constant (for the present experiment), on w and V, in (8). 

3. The experiment 
The experimental tank is a 22.5 in. x 22.5 in. x 24 in. Plexiglas container. A horiz- 

ontal grid, which has a sliding fit with the container and is free to oscillate in a vertical 
plane, is held in the upper portion of the tank by three connecting bars of t i n .  
diameter, which in turn are connected to the slider of the oscillating mechanism. 
Rotary motion of the motor is converted to  the reciprocating motion of the slider 
by a mechanism which was a part of an American optical microtome, finished precisely 
to give a sinusoidal motion by a slider-crank-type mechanism. The amplitude of the 
vertical oscillations (which is defined as half the stroke length S) is 2.5 cm (figure 1 ) .  
The mechanism is powered by a 4 horsepower electric motor via a reduction gearbox 
and a flexible coupling. The frequency was varied by a speed controller. The 
frequencies used (viz 8-14 rad/s) were, we hope, low enough to prevent the unwanted 
mean circulations reported by McDougall (1979). The ‘action ’ of the grid used in the 
experiment has been calibrated with respect to frequency w by Dickinson (1980) (see 
also Dickinson & Long 1983) by observing the growth of a turbulent layer in a 
homogeneous fluid and comparing with the equation D* = (Kt)i .  The result is 
contained in figure 2. The grid consists of square Plexiglas bars of cross-section 
# in. x # in., aligned in a square array with 1.875 in. between the centres of the bars. 
The geometric solidity of the grid is 36 yo and, in the present case, should not differ 
very much from the fluid-mechanical solidity (Corrsin 1963). 

We should mention another important factor concerning grid-generated turbulence, 
namely the ‘unstable jet-switching phenomenon ’. According to Corrsin (1963), 
‘ . . . the wake system will be unstable in the large when the fraction of duct area 
blocked is sufficiently great. Then the individual jets coalesce successively into larger 
and larger jets by actual gross direction changes. The resulting turbulence is not only 
of larger scale and more intense than in the stable case but is less likely to be 
homogeneous.’ This multiple jet-switching phenomenon is more pronounced a t  such 
high solidities as 60 % . 

I n  setting up the experiment, a known amount of fresh water coloured with sodium 
florescein dye was put in the tank. Salt water was then allowed to flow into the bottom 
of the tank very slowly in order to avoidmixing. The position of the top of the upper 
layer was always held at a fixed position relative to  the grid. Experiments were begun 
by simultaneously starting the motor and the electronic timer. Deepening of the 
mixed layer was monitored and verified by the observations on a shadowgraph. A 
horizontal laser beam was traversed vertically to estimate the interfacial-layer 
thickness by a method described by Thorpe (1973). I n  addition, a vertical sheet of 
laser light was passed through the tank and the resulting image was observed on the 
shadowgraph. When the laser beam was properly located (the laser was mounted on 
a frame and was free to move in a vertical plane), the latter technique gave a much 
clearer estimate of the interfacial-layer thickness. A single-electrode conductivity 
probe was traversed vertically over the total depth of the tank, and the recordings 
of depth ‘us. density data were plotted on an (x, y)-recorder. Additional observations 
were made by a fixed conductivity probe giving conductivity variations at a point 
with respect to time. Depth/conductivity plots were also used to  estimate the 

13-2 
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FIGURE 2. Action/frequency behaviour of the grid of Dickinson & Long (1983). 
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FIQURE 3. Graph of D vs. t A  for two experiments: 0,  V, = 12.03 cm/s, K = 18.7 cm2/s; a, 
V, = 15.24 cm/s, K = 18.7 cmz/s. 
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interfacial-layer thickness according to a method described in detail by Crapper & 
Linden (1974). 

The depth D of the mixed layer was plotted against tA as seen for example in figure 
3. In each such plot a linear relation is seen at  the smaller depths, followed at  a certain 
point (‘ breakpoint ’) by another linear relation with increased slope (increased 
entrainment rate). The fit of these data (up to the breakpoint) to the curve 
D = &+do was accomplished by a last-square computer program, and the distance 
do from the virtual origin to the free surface and the slope a of the graph were found. 
Both correlation coefficient and standard error were used in determining the 
breakpoint, and hence the number of readings included in calculating the slope. Close 
observation of the location of the virtual origin revealed that in most experiments 
it lay between 6.0-7.5 ern below the free surface whereas the mean grid position was 
6.75 cm (i.e. the virtual origin was in a thin strip about the midplane of the grid). 
This small variaion of do seemed to have no relation to the size of V, or K. Hopfinger 
& Toly (1976) have observed the position of the virtual origin (which they define as 
the point with zero integral lengthscale) a t  a distance of (is+ 1 cm) k0.5  em from the 
top position of the grid. 

Errors in the final results were estimated using the method devised by Kline & 
McClintock (1953) in which final uncertainty is estimated from the uncertainty of each 
independent measurement. For the present experiments, the uncertainties were 
k0.2  em for D, + 2  s for t ,  and f4 .9  cm/s2 for Ab, so that the calculated maximum 
possible uncertainties were f0.233 cm/minA for the slope a, f 3  cm/s for V,, and 
f 1.25 cm2/s for K.  

4. Qualitative observations 
During the initial period of deepening, the wake and jet structure produced near 

the grid could easily be seen. A conductivity probe held near the midplane of the grid 
and 5 cm below the midplane revealed forced salinity fluctuations at these points with 
the same frequency as that of the grid. The effect could not be observed at a distance 
of about twice the stroke length, and hence the data taken near the grid were omitted 
from final calculations. After the initial period of deepening, the interface descends 
regularly. Shadowgraph observation clearly shows travelling internal waves on the 
interfacial layer. Observations on a shadowgraph by a thin vertical sheet of laser light 
were most striking, and showed both the highly active upper part of the interfacial 
layer and less active lower part. Also a laser beam passing through the interface bends 
appreciably indicating the high density gradients. In a strip at the top of the 
interfacial layer the curvature of the density profile was seen to be a maximum, and 
the thickness of this strip reduces as the interface descends. Internal waves generated 
on the upper part, while travelling, steepen and break by bursting at the ‘tips’ of 
the waves. Careful observations also show that, once the internal wave breaks, the 
tip rises and mixes with the upper layer rather than advecting horizontally. Figure 
4 shows a time-series record on an (2, y)-plotter of salinity fluctuations at  a fixed point 
which is initially in the interfacial layer. The record shows that fluctuations are much 
larger in the interfacial layer than in the mixed layer. As time increases, the interface 
descends and, when the bottom of the mixed layer coincides with the probe position, 
vigorous fluctuations can be seen. Further observations of salinity fluctuations at  
various points in the interfacial layer show a somewhat decreased activity as the 
interfacial layer moves away from the grid. Time-series observations also clearly show 
a decreased intensity at the top of the interfacial layer as the distance from the grid 
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FIGURE 4.  Time-series conductivity fluctuations recorded by a fixed conductivity probe. Initially 
the probe was in the interfacial layer. (Horizontal scale: one inch represents 100 9). 

increases. Another event, observed most frequently at small values of D (low Ri) ,  
is the splashing out of fluid in the interfacial layer by large-scale eddies burying 
themselves in it. Linden (1973) has suggested this as a possible entrainment 
mechanism a t  low Richardson number, by which he may mean that the splashed-out 
fluid retreats back to  the mixed layer carrying outer-layer fluid with it. We were not 
able to see such details. 

5. Principal experimental results 
5.1. th behaviour 

I n  accordance with the predictions of (8) or (lo),  plots of D us. tA (e.g. figure 3) were 
made, and, as described in $3, the distance of the virtual origin from the free surface 
do was determined from the behaviour a t  smaller times. The plots of D* = D-do,  
i.e. the distance measured from the virtual origin us. tA, and log(D-do)  us. logt, are 
shown in figures 5 and 6. Up to the ‘breakpoint ’ almost all graphs showed more than 
99 o/o correlation for a least-square fit. The slope of the graph of log (D-do)  vs. logt 
was found to be 5. 

5.2.  V, dependencet 

Several experiments were performed with the nearly constant frequency of about 
10.5 rad/s (i.e. an action of about 18.5 crn2/s) with V, varying over the range 
7 4 0  cm/s. As discussed earlier, graphs of D us. tft were first plotted and the slope 

t We define Vi  = D,Ab,, where D, and Ab, are evaluated at a time before the grid begins to 
oscillate. At that time, h = 0. 
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FIGURE 5. Graph of D-do vs, th a t  constant ‘action’ K x 18.5 cmz/s. Vo values in cm/s are 0,  
30.98; A, 24.68; X ,  20.95; 0, 15.24. 
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FIQURE 6. Graph of log(D-do) us. logt for two experiments a t  constant ‘action’ 
K = 18.5 cm2/s; V, values in cm/s are 0, 9.64; 0, 7.27. 

a was determined by a least-square fit. This slope was plotted against V, in a log-log 
plot, and the results are shown in figure 7 .  The best-fit curve for the experimental 
points were indistinguishable from a -&-graph and this supports ( lo),  derived by 
Long (1978b), rather than (7),  (8) or (9). 
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FIGURE 7. Graph of loga vs. log V, at constant 'action' K = 18.5 cmz/s. 
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FIGURE 8. Graph of D* us. th at constant V, = 11.37 cm/s: 0, K = 22.6 cm2/s; 0, 
K = 16.05 cmz/s. 
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FIGURE 9. Graph of loga vs. log K at  constant V, = 11.37 cm/s. 

5.3. K-dependence 
To check the dependence of the deepening rate on the action K (or frequency w ) ,  
several experiments were conducted with a constant V, of 11.37 cm/s. The frequency 
was changed and the action was determined from the graph of figure 2. Only a small 
range of K of 14-18 cm2/s was achieved owing to mechanical difficulties. Graphs of 
D vs. tA and D ,  vs. tA were plotted (e.g. figure 8),  and the resulting slope a was graphed 
in a log-log plot with K .  Results are shown in figure 9, and this is also in good 
agreement with (10). 

5.4. Evaluation of universal constant B, 
Accepting the validity of (lo),  we may evaluate the constant B, by two methods: 
(a)  using the intercept of the loga vs. log V, graph (i.e. figure 7), and (b )  using the 
intercept of the log a vs. log K graph (figure 9).  These calculations yielded values of 
B, of 2.63 and 2.50 respectively. Of course, the constant of proportionality is valid 
only up to the ‘breakpoint ’ as discussed above. 

5.5. Interfacial-layer thickness variation with depth 
The interfacial-layer thickness h was determined by the conductivity/depth data as 
in figure 10, and it was observed that a linear relation exists between h and D* with 
the interfacial-layer thickness about 0.1 times the depth of the mixed layer measured 
from a virtual origin. Laser-beam observations on the shadowgraph also verify the 
linear relation between h and D* (figure l l ) ,  but we see that h/D*,  estimated from 
the laser-beam technique, is approximately 0.15. Crapper & Linden (1974) have 
performed a similar study of h/D*,  and their results also show that the thickness of 
the interfacial layer is a linear function of the mixed-layer depth a t  high Ri. The reader 
should not confuse h with the amplitude 6, of the interfacial waves. According to 
Long’s (1978b) theory, the former varies only with D,, whereas the latter decreases 
with larger Ri. 

5.6. Entrainment coefficient vs. Richardson number behaviour 
One of the most common attempts in mixing experiments is to determine the 
relationship between the entrainment coefficient E = u,/u* and the Richardson 
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number Ri. Turner (1968), for example, carried out a series of experiments with 
oscillating grids. I n  these, the position of the interface was kept constant and the 
entrainment rate was determined using the rate of removal of water from the bottom 
layer, needed to  keep the interfacial layer at a constant position. The results indicate 
that, for high Richardson numbers and with stratification by salt, E - Ri-z. A similar 
relation was reported in the experiments of Hopfinger & Toly (1976). Long (1978b) 
derived (12) ,  i.e. E - Rip$, as the entrainment law for the same experiments. 

The Richardson number for the problem may be defined as Ri = D i  AblK2. Using 
the observation h = a1 D ,  and the fundamental constant for the problem given in 
Long (1978b), 

Ab(D,++h) = V:, ( 1 3 )  

it is possible to define another form of a Richardson number 

A 

where Ri = ( 1  + ?pl) Ri. 
A log-log plot of the entrainment coefficient 05. Richardson number is shown in 

figure 12, which reveals an excellent agreemznt with the prediction of (12) derived 
by Long (1978b), i.e. E = a,Ri-f or E = a3Ri-f. The universal constFts  a, and a3 
may be found by the intercept of the line fitted to the log E us. log Ri graph. This 
yields a3 = 50. Then, taking a1 x 0.1, we estimate a, = 46. Notice that these values 
of a, and as, with the definition of ‘action’ K = D$/t  in Dickinson & Long (1983), 
are very different from those estimated by Long (1978b), who used the definition 
K,  = a,l. Thus, using ( 2 )  with a proportionality constant 0.25 (average value of 
Hopfinger & Toly 1976) and (4 )  with C, = 0.25, it is possible to calculate K ,  = a,l, 
and, based on this value, a3 becomes 3.22 x lo5 and a, becomes 2.96 x lo5.  This value 
of a, is consistent with Long (1978b), who predicted a, = 3.1 x lo5.  Notice also in 
figure 12 that  the Hopfinger & Toly data ( w h T  expressed in terms of ‘action’ K )  
collapse well with our present data a t  higher Rz and lend some additional support 
to the Ri-3 behaviour. 

5.7.  Depth-time behaviour after ‘breakpoint’ 

As we mentioned in $33 and 4,  after a certain depth, the slope of the D us. tf t  curve 
increases, indicating a markedly increased entrainment rate (figures 3,  5 and 6). In 
view of the excellent agreement between the observed entrainment a t  smaller times 
(depths) and the theory (which assumes a horizontally infinite fluid), i t  is reasonable 
to suppose that the behaviour after ‘breakpoint’ is a wall effect, perhaps because the 
walls cause an increased vertical velocity due to flattening and this in turn leads to  
higher velocities tangent to  the interface and so higher entrainment rates. Then the 
width W of the vessel enters the problem as a new parameter, i.e. 

(15) U, = f (  V,, K ,  D*, W ) .  

Non-dimensionalization yields 

A 

I n  contrast with the observed collapse of the E us. Ri data for earlier times (figure 
1 2 ) ,  figure 13 shows the absence of collapse after the ‘breakpoint’. Log-log plots of 
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E vs. D,/ W at constant Richardson number Ri were made (not shown), and, in a 
search for collapse, the empirical behaviour E - (D*/ W)l 39 was chosen. A plot was 
then made and the collapsed results are shown in figure 14. This figure suggests the 
behaviour 

E - &-$(%)13g. (17)  

We point out that this empirical relation does not lead to (12) in the asymptotic limit 
D,/ W+O, but this, perhaps, is not unexpected because the two regions have different 
dynamics. 

5.8.  Variation of the position of the breakpoint 

A final observation is the dependence of the position of the breakpoint of figures 3, 
5 ,  6 and 8 as discussed in $3. A plot of the occurrence of the breakpoint against the 
lpncrth T,, = K / K  i q  qhnwn in fiviirp I5 Since we Pame tn the  tentative rnnrhiqinn _-__ bl'- I'p --, ," -I I--- --- - - ~ - - -  --. --__-- .. - ---__- -- ___- - --__-_----_- 
that the breakpoint is a wall effect, dimensional analysis suggests the relation 

w, of course, is a constant length in this experiment, so that D*b is a function only 
of the variable length L* = K /  V,, as figure 15 perhaps indicates. 
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FIGURE 13. Graph of logE us. l o g f i  after the 'breakpoint' for 8 different experimental runs. 
Symbols have the same meaning as figure 12, except 0 ,  V, = 12.03 cm/s, K = 18.7 cm2/s; 0,  
7.27 cm/s, 18.2 cmz/s. 

The physical significance of L* is of interest. If 6 is the amplitude of the wave 

Ab 
h 

disturbances in the interfacial layer, equating potential and kinetic energies yields 

(19) ( T i  - -62, 

where 
of the interfacial layer. Using h = a,D*, where a, x 0.1, we find 

is the r.m.s. velocity of the eddies at  the interface and h is the thickness 

(20) v; 
D*(1 +$a1)' 

6 - L*, (21) 

indicating that L* is a length proportional to the amplitude of the interfacial-wave 
disturbances caused by energy-containing eddies. 

Ab = 

Then (19) and (20) and uu - KID* yield 

5.9. Vuriation of interfacial-layer wave frequency with Ri 
As mentioned in 9 3 and as seen in figure 4, we recorded the conductivity fluctuations 
a t  various positions in the fluid. The large-amplitude fluctuations in the upper part 



392 

I I I I I 

30 - 
29 - 
28 - 
27 - 

(cm) 25 - 

. . . 
- 

: D*b 26 - 

24 - 
23 - 

. . 
22 - . .  - 
21 - 
2 0 - 0  ' 
19 I .  I I 

H .  J .  S.  Fernando and R. R. Long 

E 
log - 

(D*/W)'39 

-1.6 L 
-1.7 - 
-1.8 - 
-1.9 - 
-2.0 - 

-2.2 -2 .1  t 
-2.3 - 

-2.4 - 
-2.5 - 

-2.6 - 
-2.1 

-2.8 

-2.9 - 
-3.0 - 
-3.1 - 

- 
- 

I I I I I I I I I ~  

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 
log f i  

FIGURE 14. Graph of log [E/ (D*/W)1.38]  ws. l o g s  after the 'breakpoint' for the same 
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FIGURE 16. Graph of non-dimensional frequency of disturbances near the top of the interfacial 
layer vs. the Richardson number Ri, = 0% AblK. 

of figure 4 are characteristic of the upper portion of the interfacial layer, and we 
analysed eight such records in order to compare measurements of the period of the 
large fluctuations with the theory of Long (19786). The theory predicted 

8 2  - = a5 Ritf , 
D* 

where w2 and 8, are the characteristic velocity and lengthscales of the quasi-isotropic 
eddies just above the interface, Ri, = 0% AblK? is the Richardson number, and a*, as 
are universal constants estimated by Long (1978b) as a4 = 31,a, = 15.7. According 
to the theory, these eddies cause the large interfacial disturbances, which therefore 
have the frequency N = w2/6,, or 

To compare with measurements and to be as objective as possible, we calculated 
the frequency of the zero-crossings of the conductivity signal for the large-amplitude 
fluctuations a t  the upper portion of the interfacial layer, and the result is shown in 
figure 16. The agreement is only fair. The line drawn in yields a value of a4/a5 = 0.66 
compared with Long’s estimate of 1.97. 

6.  Conclusions 
The experimental results above show that turbulent entrainment in a two-fluid 

system generated by an oscillating grid can be well described by a theory of Long 
(1978b) in which the depth of the mixed layer, the thickness of the interfacial layer 
and the entrainment rate are given by (lo),  (11)  and (12). After a certain depth, in 
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the vicinity of 28-34 cm from the top of the mixed layer, the entrainment laws tend 
to deviate from this theory ; the deviation is due, possibly, to the entrapment of eddies 
between the walls, thus changing the entrainment mechanism. 
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